The Classification of Topologically Expansive Lorenz Maps

نویسنده

  • JOHN H. HUBBARD
چکیده

We show that topologically expansive Lorenz maps can be described up to topological conjugacy by their kneading invariants. We also give a simple condition on pairs of symbol sequences which is satisfied if and only if that pair of sequences is the kneading invariant for some topologically expansive Lorenz map. A simple extension of the theorems to the case of expansive maps of the interval with multiple discontinuities is described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endomorphisms of Expansive Systems on Compact Metric Spaces and the Pseudo-orbit Tracing Property

We investigate the interrelationships between the dynamical properties of commuting continuous maps of a compact metric space. Let X be a compact metric space. First we show the following. If τ : X → X is an expansive onto continuous map with the pseudo-orbit tracing property (POTP) and if there is a topologically mixing continuous map φ : X → X with τφ = φτ , then τ is topologically mixing. If...

متن کامل

Spectral Decomposition for Topologically Anosov Homeomorphisms on Noncompact and Non-metrizable Spaces

We introduce topological definitions of expansivity, shadowing, and chain recurrence for homeomorphisms. They generalize the usual definitions for metric spaces. We prove various theorems about topologically Anosov homeomorphisms (maps that are expansive and have the shadowing property) on noncompact and non-metrizable spaces that generalize theorems for such homeomorphisms on compact metric sp...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

A Multifractal Analysis of Gibbs Measures for Conformal Expanding Maps and Markov Moran Geometric Constructions

We establish the complete multifractal formalism for Gibbs measures for confor-mal expanding maps and Markov Moran geometric constructions. Examples include Markov maps of an interval, hyperbolic Julia sets, and conformal toral endomorphisms. This paper describes the multifractal analysis of measures invariant under dynamical systems. The concept of a multifractal analysis was suggested by seve...

متن کامل

Local Product Structure for Expansive Homeomorphisms

Let f : M → M be an expansive homeomorphism with dense topologically hyperbolic periodic points, M a compact manifold. Then there is a local product structure in an open and dense subset of M . Moreover, if some topologically hyperbolic periodic point has codimension one, then this local product structure is uniform. In particular, we conclude that the homeomorphism is conjugated to a linear An...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008